


| Date Planned ://             | Daily Tutorial Sheet-5 | Expected Duration : 30 Min |
|------------------------------|------------------------|----------------------------|
| Actual Date of Attempt : / / | Level-1                | Exact Duration :           |

**61.** MeO  $\longrightarrow$  CHO + (X)  $\xrightarrow{\text{CH}_3\text{COONa}}$  MeO  $\longrightarrow$  CH = CHCOOH

the compound (X) is:

(A)  $CH_3 - COOH$ 

**(B)** BrCH $_2$  – COOH

(C) (CH<sub>3</sub>CO)<sub>2</sub>O

- (D) OHC COOH
- **62.** Which of the following does not undergo Cannizzaro's reaction?
  - (A) Benzaldehyde

- **(B)** 2-methylpropanal
- **(C)** p-methoxybenzaldehyde
- **(D)** 2, 2-dimethylpropanal
- **63.** 3-hydroxybutanal is formed when (X) reacts with (Y) in dilute (Z) solution. What are X, Y and Z?

X

CH<sub>3</sub>CHO,

- ${\rm Y}$   $({\rm CH_3})_2{\rm CO},$
- Z NaOH

- **(A)** CH<sub>3</sub>CHO,
- CH<sub>3</sub>CHO,
- NaCl
- (C)  $(CH_3)_2CO$ ,

**(B)** 

- (CH<sub>3</sub>)<sub>2</sub>CO,
  - HCl

- **(D)**  $CH_3CHO$ ,
- CH<sub>3</sub>CHO,
- NaOH
- **64.** Acetaldehyde cannot show:
  - (A) Iodoform test
- (B) Lucas test
- (C) Benedict's test (D)
  - Tollen's test

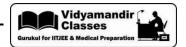
- **65.** Which of the following cannot reduce Fehling solution?
  - (A) HCOOH
- (B)  $CH_3COCH_2CH_3$  (C)
- HCHO
- **(D)** H<sub>3</sub>CCHO
- **66.** Which of the following give an explosive RDX, on nitration?
  - (A) Toluene
- (B) Benzene
- (C) Guanidine
- (**D**) Urotropine
- **67.** When benzaldehyde is heated with acetophenone in presence of sodium hydroxide, then product on heating is:
  - (A)  $C_6H_5CH = CHCOC_6H_5$
- **(B)**  $C_6H_5COCH_2C_6H_5$

(C)  $C_6H_5CH = CHC_6H_5$ 

- **(D)**  $C_6H_5CH(OH)COC_6H_5$
- **68.** The missing product X in the given transformation is :

**(A)** CH<sub>3</sub>OH

**(B)**  $H_2CO_3$ 


(C) HCOONa

- (D) HCOOCH<sub>3</sub>
- **69.** In the given transformation, which of the following is the most appropriate reagent?

- (A)  $NH_2NH_2/glycol/OH^-$
- **(B)** Zn Hg / HCl

(C) Na, Liq.  $NH_3$ 

**(D)** NaBH $_4$  / H $_2$ O



- **70.** CH<sub>3</sub>CHO  $\xrightarrow{\text{Al(OEt)}_3}$  A. A will be:
  - (A) Only CH<sub>3</sub>COOCH<sub>2</sub>CH<sub>3</sub>
- **(B)** A mixture of CH<sub>3</sub>COOH and EtOH

(C) Only CH<sub>3</sub>COOH

- (D) Only EtOH
- **71.** Consider the following reagents,
  - **I.** LiAlH<sub>4</sub>

**II.**  $H_2 / Pd - BaSO_4$ 

III. DIBAL-H

**IV.** LiAlH(t - BuO)<sub>3</sub>

Which of the above reagents can be used to reduce CH<sub>3</sub>COCl into CH<sub>3</sub>CHO?

- (A) I and II
- (B) II and III
- (C) I and IV
- (D) II, III and IV

**72.**  $C_5H_{10}Cl_2$ + NaOH  $\longrightarrow$   $C_5H_{10}O$ (B)

B is an aldehyde with no  $\alpha\text{-hydrogen}.$  Thus, A is :

(A)  $(CH_3)_3CCHCl_2$ 

(B)  $CH_3CH_2CHCHCl_2$   $CH_3$ 

(C) CH<sub>3</sub> CHCH<sub>2</sub>CHCl<sub>2</sub> | CH<sub>3</sub>

- Cl | (D) CH<sub>3</sub> CCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> | | Cl
- 73. Identify A and B in following :  $CH_3CH_2CCH_3 \xrightarrow{C_6H_5CO_3H} \xrightarrow{H_3O^+} A + B$ 

  - (A)  $CH_3CH_2CO_2H$
- B CH<sub>3</sub>OH

**(B)**  $CH_3CO_2H$ 

 $\mathrm{CH_{3}CH_{2}OH}$ 

(C)  $CH_3CO_2H$ 

CH<sub>3</sub>OH

**(D)**  $CH_3CO_2H$ 

- $CH_3CO_2H$
- \*74. Which statement is true about Cannizzaro reaction?
  - (A) It is a disproportionation reaction
  - **(B)** It is a hydride transfer reaction
  - **(C)** It is given by all the carbonyl compounds
  - **(D)** It takes place with 50% aqueous or ethanolic solution
- **75.** Mixture of CH<sub>3</sub>CH<sub>2</sub>OH and CH<sub>3</sub>CHO can be separated by using :
  - (A) NaHSO<sub>3</sub>

(B) NH<sub>2</sub>OH

(C) HCN

**(D)**  $NH_2 - NH_2$